**HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI** 

# MITEN5G MUUTTAA VERKKOJA JA PALVELUJA – 5G SERVICES AND BEYOND

PROFESSOR SASU TARKOMA UNIVERSITY OF HELSINKI AND UNIVERSITY OF OULU



# Why we need 5G

## Diverse requirements from different use cases $\rightarrow$ 4G has trouble meeting these needs

### Very large number of connected devices

- Small and non-delaysensitive tx
- Low cost devices
- Very long battery life



Ma. sive Machine Type Communications

**HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI** 

throughput, latency, and availability





Source: GSMA Intelligence

# How 5G will achieve this?

### Evolution of radio access network

- New spectrum for 5G
- Advances in radio technology
  - Many physical layer improvements for improved spectral efficiency
  - Beamforming and Massive MIMO
- Cell densification
- Cloud RAN

### Flexible core network

- Service-Based Architecture
- Network slicing
- Mobile edge computing
- In-network AI







# Key developments that are converging





**Cloud computing:** distributed clouds, general edge computing, DevOps

**Cellular networks:** cloud RAN, O-RAN, network slicing, Mobile Edge Computing (MEC), private networks



AI: distributed techniques: federated learning, transfer learning, differential privacy, forthcoming regulation

## **Flexible Network Slices**

#### **Drones and other autonomous sensors**



Edge computing is a form of cloud computing and part of the 5G architecture

Edge computing facilitates application and service logic running on **edge servers near end-devices** 

Network slices support programmability of the network and enable flexible placement and configuration of virtualized network functions

### Smart, digital and virtual factories and connected industries

Virtualization across the environment: virtual front haul, back haul, compute, storage, network slicing

Edge Server



![](_page_6_Figure_5.jpeg)

Core Network Cloud Data Center

### A 5G network slice for air pollution sensing platforms

- Accurate 3D location
- sensors

![](_page_7_Figure_7.jpeg)

Builds on: Station for Measuring Earth Surface-Atmosphere Relations (SMEAR) https://www.atm.helsinki.fi/SMEAR/

Green path navigation

![](_page_7_Picture_11.jpeg)

![](_page_7_Picture_12.jpeg)

![](_page_8_Picture_0.jpeg)

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

![](_page_8_Picture_2.jpeg)

![](_page_8_Picture_3.jpeg)

## **Centralized cloud for Al**

![](_page_9_Figure_1.jpeg)

Xu, D., Li, T., Li, Y., Su, X., Tarkoma, S. and Hui, P., 2020. A Survey on Edge Intelligence. arXiv preprint

## Edge Intelligence

| Applications/slices               | 5G<br>eMBB<br>URLLC<br>mMTC                                    |
|-----------------------------------|----------------------------------------------------------------|
| Devices                           | Smartphones, IoT, vehicles and drones                          |
| Spectral and energy<br>efficiency | 10x                                                            |
| Data rate                         | DL 20Gb/s<br>UL 10Gb/s                                         |
| End-to-end latency                | eMBB: 4ms<br>URLLC: 1ms                                        |
| Frequency bands                   | Sub-6GHz<br>MmWave                                             |
| Architecture                      | Early cloud cloud-native<br>and cloud RAN, private<br>networks |
| ΑΙ                                | Edge Intelligence                                              |

Inspired by Walid Saad, Mehdi Bennis, and Mingzhe Chen. A Vision of 6G Wireless Systems: Applications, Trends, Technologies, and Open Research Problems. IEEE Network Magazine

#### **Anticipated for 6G**

- New applications including XR/AR/VR, massive-scale sensing and IoT, autonomous robotics, combination of applications. Capability to generate slices with desired radio, network and application capabilities
- Versatile and more heterogeneous consumer and industrial equipment
- 1000x

1Tb/s

<1ms

Sub-6GHz

MmWave

THz band

Non-terrestrial communications

Fully distributed cloud native with orchestration of fine-grained functions and containers, continuous development and testing, sustainability a key consideration

Ubiquitous Intelligence

![](_page_11_Picture_0.jpeg)

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

![](_page_11_Picture_2.jpeg)