



Primary Process Container Terminal Rotterdam World Gateway

- Containers arrive at Deepsea Quay
- Stored on Red marked stacks
- Further transport via:
  - Water/Barges
  - 2. Rail/Train
  - 3. Road/Trucks
- Previous automation with WiFi signals:
- Too much outage



#### BARGE/FEEDERKADE

Water depth 11 meter
Length 550 meter
Number of quay cranes 3

DEEPSEA QUAY

Water depth 20 meter

Length 1.150
meter

Number of Deepsea quay
cranes 11



## RWG needs



#### **ISSUE**:

WiFi for data communications in AGV's, Trucks and Tablets unreliable and unpredictable

- Too many outages
- Multiple WiFi signals disturbing each other
- Varying performance in signal strength
- High OPEX due too extensive WiFi network (many hotspots)



## RWG needs



### **SOLUTION:**

Fully redundant high available and secure Private LTE network delivered and managed by Ericsson

- Virtualized EPC
- Enterprise OSS
- Full Geo-redundant system



Data Modem

Radio / Antenna

Core Equipment

**RWG Application Server** 

## **KPI / Performance**



- Industry KPI's much more aggressive compared to consumer networks
- Downtime immediately affects operations causing high financial impact
- RWG requirements:
  - ultra high availability
  - low latency
  - guaranteed throughput
- 99.99% uptime
- <50 ms
- >20Kbps per client









# **5G** Automated Port



### The challenge

Automatic & remote operations are key to efficiency. Fiber is expensive and not flexible for moving cranes. Today WIFI and 4G cannot provide the needed bandwidth and latency features

### Technology used

5G provides the needed low latency for PLC control and high bandwidth for video transmission from 30+ cameras on each crane. Fiber ruled out due to mobility restrictions.

#### Results

STS crane successfully connected by Ericsson 5G and container lifting performed over 5G from remote operation room in production port. 70% savings in labor costs. World's first case. The vision is one 5G network to support all automatic port scenarios: STS crane, RTG crane, AGV, PTT, massive IoT, etc.



Hybrid transmission over 5G

- 30+ HD cameras in uplink
- PLC control traffic with <18ms</li>
   low latency



The world's first container lifting supported by 5G in production port

Partners:









# Sea for Value – Fairway project



- Business Finland funded project
- Provide blueprints towards
  - Digitalisation
  - Service innovation
  - and information flows in maritime transport
- Preparing for advanced autonomous operations and navigation
- Smart fairway navigation experiments
- ePilotage working environment (on shore) and remote pilotage experiments



## 5G Momentum 27.9.2019 WS outcome



- 5G Merenkulussa project driven by Ericsson and Ålcom
- Utilizing the Ålcom 5G network for maritime trials
- Infrastructure installation to be finalized in the near future

