EUEIP 4.1 OPTIMUM QUALITY TASK

KEY FINDINGS

TOMI LAINE, RAMBOLL FINLAND 10.3.2021

SRTI/RTTI QUALITY - DATA TYPES COVERED

 The work in EUEIP Activity 4.1. and its precedenting activities in EIP+ and EIP is concentrating in the quality of EVENT-BASED traffic information + Travel time info

Safety Related Traffic information

- a. Temporary slippery road
- b. Animal/people/obstacles/debris on the road
- c. Unprotected accident area
- d. Short term road works
- e. Reduced visibility
- f. Wrong-way driver
- g. Unmanaged blockage of a road
- h. Exceptional weather conditions

Real-time traffic information /dynamic road status data

(a) road closures (b) lane closures (c) bridge closures (d) overtaking bans on heavy goods vehicles (e) roadworks (f) accidents and incidents (g) dynamic speed limits (h) direction of travel on reversible lanes (i) poor road conditions (j) temporary traffic management measures

1

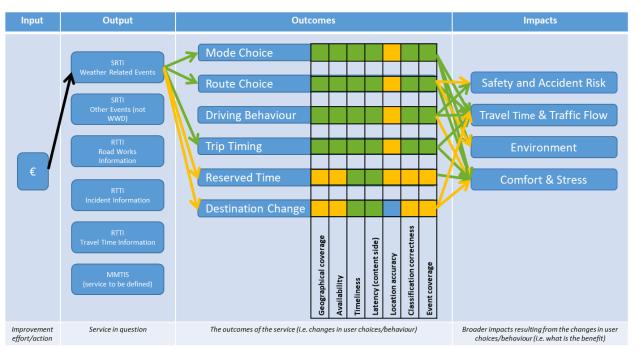
SRTI/RTTI QUALITY - THE FRAMEWORK

Example. Validated Quality Requirements for safety-related events (all but wrong way driver)

	* Basic	** Enhanced	*** Advanced	***
Timeliness start	Best effort	95 % of events Acceptance after first detection < 10 min Time between occurrence and first detection: Best effort	95 % of events Detection & acceptance < 5 min after event occurrence	
Timeliness update/end	Best effort	Best effort	95 % of events Detection & acceptance < 10 min after event change/end	
Latency (content side)	80% of events < 10 min	80% of events < 5 min	95% of events < 5 min	
Location accuracy - Area	95% of events administrative region (TCI: n/a)	Geographic area; 95 % of events 10 km accuracy (TCI: n/a)	Geographic area; 95 % of events 5 km accuracy (TCl: n/a)	
Location accuracy - Road	95 % of events correct link between Intersections	95 % of events correct link between Intersections AND distance < 4 km	95 % of events correct link between Intersections AND distance < 2 km	
Classification correctness	> 85%	> 90%	> 95%	
Event coverage	Best effort	Best effort	> 80% of all occurring events	

THEORETICAL FRAMEWORK FOR THE TASK "WORK TOWARDS OPTIMUM QUALITY OF ITS"

Costs of service production Societal benefits of information service Data Quality According to Capital Budgeting Theory, there is an economic inflection point, beyond which available quality improvement action no longer yields socioeconomical benefits to the same extent that investments costs arise.


Costs /benefits (€)

RESEARCH QUESTIONS, REVISED

- 1. to Identify different use cases and significant impact mechanisms in achieving societal benefits of selected information services
- 2. to Identify the importance of different quality criteria for the realisation of the significant impact mechanisms
- 3. to recommend a "target quality level" or an "optimum quality range" for the critical quality criteria using the Validated Quality Package framework
- 4. to recommend road operators' actions by which to improve the critical quality elements efficiently, taking into account ongoing technical development
- 5. to recommend road operators' role and actions in the service value chain for different service types in order to maximise societal benefits

IDENTIFYING IMPACT MECHANISMS AND ADDING THE QUALITY ASPECT

The impact mechanisms and critical quality criteria of weather-related safety warnings (SRTI)

The most significant quality criteria over all analysed information services are (indicative result):

LOS criteria

- Geographical coverage Quality Criteria
 - Timeliness (event-based information) / Reporting period (status information)
 - Latency
 - Classification correctness (event-based information) / Error rate (status information)

PROPOSAL FOR OPTIMUM OR TARGET QUALITY LEVELS* FOR THE SELECTED INFORMATION SERVICES

	RTTI Travel time information		SRTI Weather related	SRTI events (other than weather &	SRTI short term road works
Geographical coverage	Optimum coverage may be 100 % of the regularly congested TEN-T network and network where exists regular travel time fluctuation due to road works and incidents.	Geographical coverage	 Enhanced (80%) for the whole main road network and Advanced (95%) for TENnetwork. 100 % or roads that have local recurrent weather problems. 	WWD) Advanced (95%) or 100% of network even though detection infra does not cover the same network.	warnings Advanced (95%) However, target should be 100% of all road works in the responsibility of the road authority.
Reporting period	Advanced (1 min) for the congested or incident-prone OE's. Enhanced (5 mins) for less				
	congested OEs.		Enhanced		
Timeliness (update)	Advanced (95 % of all reports < 2 min)	(start)	(For 95 % of all events: Time Best effort Acceptance after first detectio	between event occurrence and first detection: on $< 10 \text{ min}$)	
Latency (content side)	Advanced (95 % of all reports < 2 min)	Latency (content side)	Advanced (For 95% of all events < 5	Advanced (For 95% of all	Enhanced (For 80% of all
Error Rate	Depending on the OE Enhanced (5%/20%) or Advanced (5 %/10%)	(content side)	(FOF 95% OF all events < 5 min)	(101 93 % or all) events < 5 min)	events: $< 5 \text{ min}$)
		Location accuracy	-	Advanced (< 5 km)	-
RAMBOLL		Classification correctness	Advanced (> 95%)		

*It should be noted that the proposal only applies for technologies and services that are currently in active and widespread use.

RECOMMENDATION ON ROAD OPERATORS' ACTIONS TO IMPROVE THE CRITICAL QUALITY ELEMENTS EFFICIENTLY

	Identified methods
Geographical coverage	 Instrumentation of the road network (cameras and other sensors) Human resources (road inspectors) and their location optimization
Timeliness (start)	 System integration (specifically with Emergency Response Centres) Process optimization and development of automatic incident detection (e.g. Charm in the Netherlands, smart cameras) Instrumentation and human resources for monitoring in the Traffic Management Centres Mobile human resources (Road inspectors) Development of weather-related event prediction models
Latency (content side)	 System integration and automatization (e.g. pre-filled event information template) Use of vehicle data integrated to other data sources Measure and display latency towards operators and set a quality target
Location accuracy	 Physical road markers every 100 m to improve accuracy of the first detection (usually manual call to 112 or similar service) Use of smart cameras and data analytics to detect/verify the exact location of an event
Classification correctness	Human resources continuous training

Identified actions related to event-based information

- In the recent years actions have been based mostly on non-scalable actions (road instrumentation, human resources), as well as system integration
- Currently and in the next two years mobile technologies are lowering the unit costs (€/km) and automatization and data fusion will be improving efficiency of the existing instrumentation and systems
- In the near future (3-5 years) the development and market penetration of C-ITS will make information more precise, more current and more dedicated to the individual road user and her current situation on the road.⁷

RECOMMENDATIONS ON ROAD OPERATOR'S ROLE AND ACTIONS IN THE SERVICE VALUE CHAIN

Service Provision Service Presentation Content detection Content Processing Competition on the market and connected Use of reliability index Use of graphical route Status type information vehicles development keeps developing the in the service provision displays on road-side services (no actions identified for road services (e.g. travel time operators) Provision of easy-to-use Investments in HMI **ISON** interfaces in research and development information) parallel to the of guidelines DatexII/XML interfaces National legislation of efficient and safe HMI of in-vehicle services Event type **Developing business** Use of all relevant Standardisation of Improving the reliability information models for acquiring data fields of the content transmission of TMC network vehicle data from standard data over all channels **OEMs** for traffic models e.g. DatexII Design feature to filter information purposes Use of push-type data events by type to Reduction of the interface in the NAP to minimize distraction Development of data used event codes for increase interest among app developers. fusion methodologies Research, development process (roadside and vehicle and legislation for streamlining efficient and safe HMI of data) for improved

in-vehicle services

services

detection

Additional proposals:

- national or regional actions that foster fleet renewal
- streamline the information value chain and improve reliability by building cooperation between road operators and service providers
- Certain guestions need clear regulation in national legislations
- Role of service channels is gradually changing. During transition period, road operators should strive to maintain good quality of all service channels

MAIN TAKE-AWAYS FOR ROAD OPERATORS

1. Know your data quality

Use the EUEIP Quality Package to design the local quality framework and identify the most feasible quality assessment methodologies.

2. Set Quality Targets

Consider the current quality level and the recommended optimum/target quality levels and consider the different needs in various operating environments when setting the quality targets.

3. Assess ongoing development

Analyse how the ongoing technological development in your organisation (monitoring systems, vehicle data, development of IT systems and automation) will affect the data quality of different information services.

4. Define and implement actions

Identify the complementary actions needed to reach the targeted quality levels. Target especially those of the critical quality criteria that seem to be lacking most behind.

5. Engage in collaboration

Facilitate active and continuous collaboration with the global and local service providers and agree about actions that streamline the information flow in the whole value chain.

6. Evaluate improvements

Build a local quality monitoring system for continuous quality measurement and use a wide range of incremental quality improvement actions. Evaluate systematically the quality improvements achieved by the projects and actions.